Hematology: Understanding the Immunoglobulins and Bone Marrow Diseases

Dr. Andrea Lee
Mississauga Halton Primary Care Clinic Day
November 19, 2016
Disclosures

• Presenter: Dr. Andrea Lee

• Relationships with commercial interests:
 • Grants/Research Support: None
 • Speakers Bureau/Honoraria: None
 • Consulting Fees: None
 • Other: None

• Potential for conflict(s) of interest: None
Objectives

- Know the indications for ordering a serum protein electrophoresis (SPEP)
- Learn to interpret the SPEP
 - Understanding polyclonal versus monoclonal gammopathy
- Develop an approach to investigating a monoclonal protein (MCP)
- Be aware of the diseases associated with MCPs
- Know when to refer to hematology
Case 1

- 60 F postmenopausal
- Hx of hypertension, dyslipidemia, DM2
- BMD shows osteoporosis - no back pain or fractures
- Basic investigations
 - Complete blood count (CBC) – normal
 - Creatinine, Ca\(^{2+}\), Phos, Mg\(^{2+}\) normal
 - Liver function tests normal, TSH normal
 - 25(OH)D low, PTH normal
- Your colleague suggests order a SPEP but you’re not sure it is required....
Interactive Question

- In the work-up of post-menopausal osteoporosis, a serum protein electrophoresis is....

A. Always indicated
B. Sometimes indicated in selected patients
C. Never Indicated
In the work-up of post-menopausal osteoporosis, a serum protein electrophoresis is….

A. Always indicated
B. Sometimes indicated in selected patients
C. Never Indicated
Primary Care Testing for SPEP

- No indication for routine testing on PHE
- Common indications:\n - Suspected immunodeficiency
 - Chronic inflammatory conditions (RA, SLE) or chronic infections (e.g., hepatitis C, HIV).

Primary Care Testing for SPEP

- Symptoms suspicious for multiple myeloma, Waldenström’s macroglobulinemia, amyloidosis
 - New-onset anemia + renal failure + bone pain
 - Rouleaux formation on peripheral blood smear
 - Back pain
 - Unexplained pathologic fracture or lytic lesion
 - Hypercalcemia
 - Renal insufficiency
 - Proteinuria
 - Unexplained peripheral neuropathy
 - Osteoporosis work up in selected patients
SPEP in Osteoporosis

- Prevalence of secondary osteoporosis is unknown
 - 26 – 27% of women and men > age 50 yr
 - as high as 60% in one study on men alone \(^2,3\)

- SPEP recommended in SELECTED patients
 - Canadian: vertebral or atypical fractures \(^4\)
 - National Osteoporosis Foundation - SPEP, SFLCR and IFE \(^5\)
 - North American Menopause Society 2010 \(^6\)
 - Am Assoc of Clinical Endocrinologists – SPEP, SFLCR \(^7\)
 - Endocrine society (men) \(^8\)
SPEP in Osteoporosis

- “Selected” subject to interpretation
- Fractures, osteopenia, osteoporosis age <65 years
- Symptom directed testing
- Fracture history

- Monoclonal protein found in 2.1% of patients screened\(^1\)

Case 1: Now what?

- You order a SPEP and find a monoclonal protein of 2 g/L

- What should you do?
 A. Refer to hematology
 B. Forget about the result, it isn’t significant
 C. Repeat testing in 6 months
 D. Order more tests to see if this is something significant
 E. Both C and D
Case 1: Now what?

- You order a SPEP and find a monoclonal protein of 2 g/L

- What should you do?
 A. Refer to hematology
 B. Forget about the result, it isn’t significant
 C. Repeat testing in 6 months
 D. Order more tests to see if this is something significant
 E. Both C and D
Understanding the SPEP

- Proteins migrate in the electrical field according to charge, size, and shape
- Densitometric scan of the gel separation

Interpreting the SPEP

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Increased</th>
<th>Decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>Dehydration</td>
<td>Protein loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protein-losing enteropathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Nephrotic syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hemorrhage, burns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Malnutrition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Liver disease</td>
</tr>
<tr>
<td>Alpha 1</td>
<td>Estrogen effect (Pregnancy)</td>
<td>Alpha1-antitrypsin deficiency</td>
</tr>
<tr>
<td></td>
<td>Acute phase reactant: infection, injury, trauma</td>
<td></td>
</tr>
<tr>
<td>Alpha 2</td>
<td>Acute / chronic inflammation</td>
<td>Malnutrition, Megaloblastic anemia, Protein-losing enteropathies</td>
</tr>
<tr>
<td></td>
<td>Estrogen effect</td>
<td>Hemolysis, liver disease</td>
</tr>
<tr>
<td></td>
<td>nephrotic syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>steroid use, hyperthyroidism</td>
<td></td>
</tr>
</tbody>
</table>

Interpreting the SPEP

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Increased</th>
<th>Decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>Hyperlipidemia, iron-deficiency anemia</td>
<td>Protein malnutrition</td>
</tr>
<tr>
<td>Gamma</td>
<td>Polyclonal gammopathy</td>
<td>Agammaglobulinemia Hypogammaglobulinemia</td>
</tr>
<tr>
<td></td>
<td>• Chronic infections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Malignancy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cirrhosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CTD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monoclonal gammopathy (IFE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MGUS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multiple Myeloma, amyloidosis, Waldenstrom’s Macroglobulinemia</td>
<td></td>
</tr>
</tbody>
</table>

Abnormal SPEP: Monoclonal Protein

- Single class of immunoglobulins secreted by abnormally expanded plasma cell clone
- Uses:
 - Screens and quantifies MCP
- Limitations:
 - Insensitive to small MCP
 - Does not subtype MCP (e.g. IgG λ etc)

AKA: M-protein, M-spike, paraprotein

Additional Tests

- **Quantitative immunoglobulins**
 - ↓ in immunodeficiency
 - ↑ in polyclonal vs monoclonal gammopathy

- **Immunofixation**
 - Typing of MCP
 - Differentiates between monoclonal vs polyclonal gammopathy
 - Doesn’t quantify protein → must order SPEP

SPEP and IFE alone will miss ~15% of plasma cell dyscrasias ¹

Additional Testing

- 24 hour urine for Urine PEP and immunofixation
 - Bence Jones protein = monoclonal protein or light chain found in the urine
- Limitations12:
 - Not sensitive to small M-proteins
 - Cumbersome to perform
 - Difficult to interpret with concentrated samples or heavy proteinuria containing polyclonal proteins
- Combined serum and urine PEP and IFE studies 97% sensitivity for plasma cell dyscrasia13

Serum Free Light Chains (SFLC)

- Normal kappa : lambda RATIO is 2:1
 - Highly abnormal RATIOS \rightarrow monoclonal gammopathy
 - Borderline abnormal ratio \rightarrow interpret with caution, can be due to polyclonal gammopathy and renal impairment

- Uses:
 - Dx of non or oligo secretory MM, amyloidosis
 - Predicting progression for MGUS, smoldering MM, plasmacytoma
 - Monitoring residual disease

Serum Free Light Chains (SFLC)

- Limitations:
 - imprecision, especially with different lots of FLC reagent 14

- Sensitivity of SPEP + IFE + SFLCR approximately 97.4% for all PCD13

- international guidelines recommend that SFLC testing replace urine electrophoresis in the diagnosis of monoclonal gammopathies

Imaging

- **Skeletal survey:**
 - Detects lytic bone lesions, osteopenia, fractures
 - Not routinely indicated if other investigations suggest MGUS
 - Nuclear bone scan not useful - lack of osteoblastic activity (i.e. can be normal)

- **CT abdo/pelvis**
 - To detect lymphadenopathy in patients in whom Waldenstrom’s is highly suspected or confirmed.
How to Investigate a MCP

MCP on SPEP → IFE

IgG, IgA, IgD kappa or lambda
CBC, Cr, Ca2+, alb, SFLCR, urine studies

IgG MCP <15 g/L
Normal SFLCR
No CRAB

Yes
Low Risk MGUS

Normal Skeletal Survey and No CRAB

Bone marrow *

MGUS

No
Skeletal Survey

Abnormal Skeletal Survey or CRAB

Multiple Myeloma

Other s/s: Cardiac, GI, Renal, Neuro, Skin

ECHO
Fat pad biopsy +/- organ biopsy
If positive

AL Amyloidosis

See next slide

IgM kappa or lambda

See next slide
How to Investigate a MCP

IgM kappa or lambda

CBC, Cr, Ca2+, alb, SFLCR, urine studies
Skeletal Survey, CT Abdo / Pelvis
Bone Marrow **

Normal XR
No CRAB
Normal CT

Abnormal Skeletal Survey or CRAB

≥10% Plasma Cells
IgM MCP >30 g/L

No

MGUS

Yes

Smoldering Waldenstrom’s

IgM Multiple Myeloma

Other s/s:
Cardiac, GI, Renal, Neuro, Skin

Lymphadenopathy, Splenomegaly
Cytopenias

Waldenstrom’s

ECHO
Fat pad biopsy +/− organ biopsy

If positive

AL Amyloidosis
“CRAB” Symptoms

- C = Hypercalcemia: Ca^{2+} > 2.8 mmol/L
- R = Renal failure: Cr > 177 or GFR < 40 ml/min
- A = Anemia: Hb < 100 or > 20 g below baseline
- B = Bony lesions (lytic lesions, plasmacytoma)
Case 1

Lab results

<table>
<thead>
<tr>
<th>Measure</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb/ WBC/Plt</td>
<td>125/5.0/300</td>
</tr>
<tr>
<td>Creatinine</td>
<td>79</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.30</td>
</tr>
<tr>
<td>Albumin</td>
<td>40</td>
</tr>
<tr>
<td>IgG</td>
<td>13.1 g/L</td>
</tr>
<tr>
<td>SPEP</td>
<td>M-protein 5g/L</td>
</tr>
<tr>
<td>Serum IFE</td>
<td>IgG kappa</td>
</tr>
<tr>
<td>Free kappa LC</td>
<td>18 mg/L</td>
</tr>
<tr>
<td>Free lambda LC</td>
<td>12.1 mg/L</td>
</tr>
<tr>
<td>SFLCR</td>
<td>1.48 (range 0.26 – 1.65)</td>
</tr>
</tbody>
</table>

What is the most likely diagnosis?

1. Monoclonal protein of Undetermined Significance (MGUS)
2. Multiple myeloma
3. Amyloidosis
4. Waldenstrom’s Macroglobulinemia
5. I have no idea
Case 1

Lab results

<table>
<thead>
<tr>
<th>Measure</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb/ WBC/Plt</td>
<td>125/5.0/300</td>
</tr>
<tr>
<td>Creatinine</td>
<td>79</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.30</td>
</tr>
<tr>
<td>Albumin</td>
<td>40</td>
</tr>
<tr>
<td>IgG</td>
<td>13.1 g/L</td>
</tr>
<tr>
<td>SPEP</td>
<td>M-protein 5g/L</td>
</tr>
<tr>
<td>Serum IFE</td>
<td>IgG kappa</td>
</tr>
<tr>
<td>Free kappa LC</td>
<td>18 mg/L</td>
</tr>
<tr>
<td>Free lambda LC</td>
<td>12.1 mg/L</td>
</tr>
<tr>
<td>SFLCR (range 0.26 – 1.65)</td>
<td>1.48</td>
</tr>
</tbody>
</table>

What is the most likely diagnosis?

1. MGUS
2. Multiple myeloma
3. Amyloidosis
4. Waldenstrom’s Macroglobulinemia
5. I have no idea
DDx Monoclonal Gammopathies

- Plasma Cell Disorders
 - Solitary plasmacytoma
 - Multiple myeloma
 - POEMS

- Lymphocytic Disorders
 - Waldenstrom’s Macroglobulinemia
 - Heavy-Chain Diseases

- Infiltrative and Deposition Diseases
 - AL amyloidosis
 - Immunoglobulin Deposition Disease

- Miscellaneous
 - MGUS
 - Transplant related Monoclonal Gammopathy
DDx Monoclonal Gammopathies

Monoclonal Gammopathies

n=39,929

- Lymphoproliferative 3% (1,298)
- Amyloidosis 9.5% (3,781)
- Multiple myeloma 17.5% (6,974)
- MGUS 58% (23,179)
- SMM 4% (1,494)
- Solitary or extramedullary 2% (774)
- Macro 2% (940)
- Other 4% (1,489)

Mayo Clinic 1960-2008

Diagnostic Criteria

<table>
<thead>
<tr>
<th></th>
<th>MGUS</th>
<th>SMM</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGUS</td>
<td>MCP <30g/L</td>
<td>SMM MCP (IgG or IgA) ≥30g/L OR</td>
<td>Clonal BMPC ≥10% with any level M-protein OR</td>
</tr>
<tr>
<td></td>
<td>AND Clonal BMPC <10%</td>
<td>URINARY MCP ≥500mg/24h</td>
<td>Plasmacytoma</td>
</tr>
<tr>
<td></td>
<td>AND No “CRAB” or amyloidosis or end-organ damage</td>
<td>AND/OR Clonal BMPC 10-60% AND</td>
<td>AND “CRAB”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No “CRAB” or amyloidosis</td>
<td>OR Any 1 of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• > 60% clonal plasma cells on bone marrow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Serum iFLC/uFLC >100 (level iFLC is at least 100mg/L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• >1 focal lesion on MRI at least 5mm in size.</td>
</tr>
</tbody>
</table>

MGUS

- **Prevalence**
 - 1.3% of healthy blood donors, 3% of adults >50 years old, 8% of adults >85 years old.18,19
 - 2-3 x more common in African Americans 20

- **Disease associations** 21
 - Plasma cell disorders, amyloidosis, LPD
 - CIDP
 - Kidney/liver transplant

MGUS

- Disease associations \(^{21}\)
 - Osteoporosis and increased risk of fractures
 - Increased pro-osteoclast and anti-osteoblast cytokines
 - Possible compromised bone microarchitecture and strength \(^{22}\)
 - Level of the paraprotein in the blood does not seem to correlate with this increased risk \(^{3}\)

- Possible associations:
 - Chronic infection, CTD, Thrombophlebitis

Risk of Progression MGUS

All 3 factors abnormal 2.9%/yr
Any 2 factors abnormal 1.9%/yr
Any factor abnormal 1%/yr
Serum M-spike <1.5g/dL, IgG subtype + normal SFLCR 0.25%/yr

Risk Factors:
- MCP >15 g/L
- Non IgG MCP
- Abn SFLCR

MGUS – IMWG Guidelines

<table>
<thead>
<tr>
<th>MGUS Risk Category</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low – 0 risk factors</td>
<td>▪ Baseline BM or skeletal survey not routinely indicated if other investigations suggest MGUS</td>
</tr>
<tr>
<td></td>
<td>▪ Repeat SPEP in 6 months</td>
</tr>
<tr>
<td></td>
<td>▪ If stable, repeat every 2–3 years or when symptoms of arise</td>
</tr>
<tr>
<td>Intermediate - High</td>
<td>▪ Baseline bone marrow *</td>
</tr>
<tr>
<td></td>
<td>▪ CT abdomen if IgM MCP</td>
</tr>
<tr>
<td></td>
<td>▪ If still MGUS, repeat CBC/SPEP in 6 months then yearly for life</td>
</tr>
<tr>
<td></td>
<td>▪ Reassess earlier if symptoms arise</td>
</tr>
</tbody>
</table>

MGUS: Other considerations

- Consider DXA to assess BMD given association with osteopenia/osteoporosis 24
- Optimize Vitamin D and calcium doses
- If osteoporosis or osteopenia identified → consider therapy with bisphosphonates 25,26
- If fractures develop 24
 - Refer to bone specialist
 - Consider kyphoplasty for treating symptomatic vertebral compression fractures

Case 1:

- You monitor the patient over 3 years and repeat BW shows …

<table>
<thead>
<tr>
<th>Measure</th>
<th>2013</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb/ WBC/Plt</td>
<td>125/5.0/300</td>
<td>100/3.5/250</td>
</tr>
<tr>
<td>Creatinine</td>
<td>79</td>
<td>185</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.30</td>
<td>2.42</td>
</tr>
<tr>
<td>Albumin</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>IgG</td>
<td>13.1 g/L</td>
<td>35 g/L</td>
</tr>
<tr>
<td>SPEP</td>
<td>M-protein 5g/L</td>
<td>24 g/L</td>
</tr>
<tr>
<td>Serum IFE</td>
<td>IgG kappa</td>
<td>IgG kappa</td>
</tr>
<tr>
<td>Free kappa LC</td>
<td>18 mg/L</td>
<td>356 mg/L</td>
</tr>
<tr>
<td>Free lambda LC</td>
<td>12.1 mg/L</td>
<td>26 mg/L</td>
</tr>
<tr>
<td>SFLCR (range 0.26 – 1.65)</td>
<td>1.48</td>
<td>13.69</td>
</tr>
</tbody>
</table>
Case 1:

- What should you do?
 A. Repeat skeletal survey and if normal, re-evaluate in 12 months
 B. Repeat skeletal survey and if normal, re-evaluate in 6 months
 C. Repeat skeletal survey and if normal, re-evaluate in 3 months
 D. Refer to hematology
Case 1:

- What should you do?
 A. Repeat skeletal survey and if normal, re-evaluate in 12 months
 B. Repeat skeletal survey and if normal, re-evaluate in 6 months
 C. Repeat skeletal survey and if normal, re-evaluate in 3 months
 D. Refer to hematology
When to refer to:

IgG, IgA, IgD kappa or lambda

- **IgG MCP <15 g/L**
 - Normal SFLCR
 - No CRAB
 - **Low Risk MGUS**
 - Repeat CBC, Cr, Ca2+, SPEP, urine studies in 6 months
 - If stable, follow-up q 2-3 years

- **IgG MCP >15 g/L**
 - IgA or IgD MCP
 - Abnormal SFLCR
 - No CRAB
 - **URGENT Heme Referral**

- **CRAB or other symptoms**
 - Routine referral to Heme

IgM kappa or lambda

- **No CRAB or other symptoms**
 - Routine referral to Heme

- **CRAB or LN, HSM, Cardiac, GI, Renal, Neuro, Skin**
 - URGENT referral to Heme
Case 1: Multiple Myeloma

Lytic Lesions on X-Ray

Bone Marrow Biopsy

28. Maslak, Peter. ASH Image Bank
AL Amyloidosis

Symptoms:

- Cardiac: Arrhythmias, CHF, orthostatic hypotension, syncope
- Renal: Proteinuria, edema, renal failure
- GI: Nausea, diarrhea, constipation, loss of appetite, weight loss
- Other: bruising, skin lesions
- Neuro: Neuropathy

Periorbital Bruising

Macroglossia

30. Pocket Dentistry. http://pocketdentistry.com/diseases-of-the-tongue/#Fig1.
Take Home Points

- SPEP should be used in primary care to investigate:
 - Patients with symptoms suggestive of plasma cell disorders
 - Selected patients with osteoporosis

- SPEP and immunofixation help to differentiate between polyclonal versus monoclonal gammopathy

- Look for “CRAB” symptoms to differentiate between MGUS and more serious diseases
Take Home Points

- Low risk MGUS can be followed by primary care physicians

- Refer to hematology when:
 - MCP >15 g/L
 - Non IgG MCP
 - Abnormal light chain ratio
 - CRAB symptoms, cardiac, neurologic, GI, LN, HSM, skin or constitutional s/s
References

References

References

References

29. Silverstein, Sophie R MB. Primary, systemic amyloidosis and the dermatologist: Where classic skin lesions may provide the clue for early diagnosis. Dermatology Online Journal. 2005; 11(1).